Busting Common Gardening Myths: Trees and Taproot Development

One common garden myth is trees have long tap roots extending straight down into the ground.  This is a common misconception of root growth, an incorrect perception shaped by “common sense” assumptions, not scientific evidence.  Most of us have seen seedlings germinate and immediately grown a “tap root” into the soil.  The root growth occurs prior to the seedling growing new leaves.  Once the tap root is established, new leaves begin to appear.

People generally think the tap root continues to grow downward, in essence resembling an enlarged carrot or a Christmas tree form.  The misconception of the tree crown and root system mirroring each other is commonly depicted in drawings of a lollypop shaped tree with identically shaped root system. 

Another misconception is tree roots stay beneath the tree canopy, only growing out to the drip line of the tree.  The misconception is excurrent shaped trees (holiday form Xmas tree, pyramidal shaped) grow similar shaped narrow, pyramidal tap root system, while decurrent, broad shaped tree crowns, (shade tree form), must have a more branched root structure, resembling a giant broccoli cluster.

Humans like symmetry, the perception that the root system mirrors the crown form is commonly depicted in tree renderings. Where the crown and root system mirror each other.  This is also seen in fertilizers with directions to apply near or at the “drip line”, the outer edge of the tree crown from which rain-water drips, as if this represents the majority of the tree’s absorbing roots.

Why does a tree grow a taproot?

Certified arborists know the taproot structure is a juvenile feature with specific functions important for a young tree, including:

  • Anchoring a young tree
  • Creating a vertical structure for lateral root development
  • Storage mechanism for sugars
  • Serves as part of the transport system for conducting nutrients and water to the trunk and canopy.

Root growth is dependent upon three factors for survival: water, oxygen and nutrients.  If any one of the three factors is missing, root growth and development stops.  Downward taproot growth slows as oxygen becomes increasingly limited with soil depth.  Compacted soils also are oxygen deficient due to crushed or damaged soil structure, limiting oxygen within soil micro and macro pores.  Flooded and or poorly drained soils are also oxygen deficient, with the same limiting effect on taproot and regular root growth and development.

As a taproot encounters limiting soil conditions, it begins to branch, adding lateral root development to explore soil resources within the top 12-18” of the soil.

Mature tree with no taproot, Photo courtesy of Western Arborist, Winter 2020.

Certified arborists understand how construction activity compacts the soil, thereby compressing the soil structure, damaging soil porosity resulting in limited oxygen, water and nutrient availability. As a result, urban tree maturation is dependent upon lateral root development, most of the structural rooting occurs within the top 12-18” of the soil.  It is estimated a trees functional root system extends two to three times the crown diameter at its widest point.  The juvenile taproot is subsumed by the rapidly developing lateral root system.

Understanding the root system location and lateral structure within the top 12-18” of the soil profile is vital to managing irrigation and maintenance practices.

Structural roots emanate from the trunk, they hold the tree upright but do not absorb any water or nutrients.  The fine root hairs responsible for water, oxygen and nutrient uptake may be located a considerable distance from the tree trunk, often at and beyond the edge of the tree crown, known as the drip line and beyond. Certified arborists and horticulturists understand proper irrigation methods, such as avoiding applying water on the root collar, designing water distribution where feeder roots are located beneath the  crown, toward the drip line and beyond.

In summary, Southern California soils do not support deep taproot development.  Construction and development compact soils, resulting in reduced soil porosity, water, nutrient and oxygen retention, three vital factors required for root development.  Over 80% of a tree root system is within the top 12-18” of the soil.  Taproot formation is a juvenile feature that is replaced by a horizontally growing lateral root system that extends two to three times the crown diameter.  Water and nutrients are taken up through the fine root hairs located beneath the crown, near and beyond the tree drip line.

Consider using  a certified arborist, horticulturist or landscape contractor, industry professionals who utilize industry standards, plant science, personal knowledge, experience and education to promote plant health.

Is Your Tree Safe?

Jeremy Rappoport, President of Rappoport Development Consulting Services LLC, made his video presentation at the ‘Tree for Tomorrow Starts Today’ Workshop. The zoom video workshop was attended by several hundred professionals from water districts, agencies, tree service and tree consultants, landscape architects and other industry professionals.

The goal of the workshop was to increase tree health and reduce impacts created by urban heat islands, and properly selecting and caring for trees today to ensure a greener tomorrow.

Mr. Rappoport’s presentation, entitled ‘Is Your Tree Safe’ examines his use of tree risk assessment for forensic investigations in tree failure accidents. The presentation depicted tree roots lifting sidewalks creating trip and fall hazard and roots damaging infrastructure, limb failures, and tree protection during construction.

The presentation offer solutions for minimizing root issues during the project design phase and early use of a certified arborist as part of the design team.

A recording of the full video presentation is available at https://youtu.be/QpRL0aQD26s

Trees for Tomorrow Start Today’ Workshop

Hello, this is Jeremy Rappoport, president of Rappoport Development Consulting Services LLC (RDCS). The workshop goal is to increase tree health and reduce impacts of urban heat islands by properly selecting and caring for trees today to ensure a greener tomorrow. The workshop is sponsored through the University of California Agriculture and Natural Resources.

As an experienced legal expert witness, I consult for defendant and plaintiff attorneys and insurers in the fields of arboriculture, horticulture, landscape and land development. My credentials as a certified arborist, registered consulting arborist, tree risk assessor qualified (TRAQ), C-27 landscape contractor, and B.S. in ornamental horticulture enable me to opine on relevant legal cases.

My presentation, ‘Are Your Trees Safe?’ focuses on legal cases involving roots lifting sidewalks creating trip and fall hazards, root, limb and trunk failures, and the forensic application of tree risk assessment. I will propose solutions to reduce tree potential tree risk during the design / development process for planners, landscape architects, civil engineers and government agencies and how to reduce current tree risk before the a defect results in a accident and resultant lawsuit.

The ‘Trees for Tomorrow Start Today’ Workshop also features ‘Working Together Across Professions ‘Success Stories’, presented by several distinguished speakers, followed by roundtable discussions. The workshop is scheduled on Tuesday, March 9, 2021 via Zoom. Click here for the registration link.

Tree Roots Lifting up Sidewalk?

Who is Better Qualified to Opine on Root Damage, Civil Engineer or Certified Arborist?

I was retained by a defendant attorney to determine whether her client’s tree was responsible for lifting the adjacent civil sidewalk that resulted in a plaintiff trip and fall lawsuit.  Based on the photographs and tree species, White mulberry (Morus alba), I was fairly certain her client’s tree was responsible for the sidewalk damage.

The attorney retained me and requested a site inspection and tree root assessment.  I trenched adjacent to the sidewalk and within a short time, encountered a three-inch diameter root growing under the sidewalk.  Further excavation revealed a network of two to four-inch diameter roots that had grown under the sidewalk, resulting in the tree roots lifting up the sidewalk panel, creating a hazardous condition resulting in a trip and fall accident.

I informed the attorney that tree roots lifting up the sidewalk, or root encroachment from her client’s tree resulted in the sidewalk damage, she said her civil engineer expert claimed it impossible for a tree root to lift a concrete sidewalk.  I questioned the engineers knowledge and experience with trees, was the civil engineer a certified arborist or horticulturist?

Although the answer was no, she felt his qualification as a civil engineer was superior to my qualifications as a certified arborist, tree risk assessor qualified, registered consulting arborist and a college educated horticulturist.  Her dilemma was having two experts who disagreed and she requested I alter my opinion.

I told the attorney altering my opinion to suit her needs was unethical, and I removed myself from the case.

What Causes Tree Roots To Lift up a Sidewalk?

The common myth is trees have tap roots that grow straight down into the soil.  While this may occur in very deep, loam soils, the reality is most containerized nursery grown trees lose their tap root in the container.  Once planted in our poor Southern California soils, when the tap root encounters physical soil obstructions, such as rock, clay or hardpan, the tap root divides and grows multiple roots around the obstacle, forming a fibrous root system.  Tap root grows into fibrous root system.

Trees require a spreading root system to maintain structural stability.  Trees dissipate energy generated during a storm or wind event by transmitting leaf, limb and trunk movement down to the roots.  A spreading root system anchors the tree movement and dissipates the energy far more effectively than a single tap root system.

Most tree roots grow within the top 24-inches of the soil horizon. Roots in top 24″ of soil.  Over time, structural tree roots (2-inch diameter and greater) growing within a shallow soil adjacent to sidewalks, footings, foundations, walls or othersub-surface infrastructure may cause damage.

Just as a twig grows into a branch, and then a limb, roots increase in length and circumference.  Irrigation water, sewer or water service leaks increase subsoil moisture beneath sidewalks or garage slabs, creating a perfect environment for root growth.

Cracked garage slab

As the root circumference increased, it exerts pressure on the concrete slab or footing above the root.  Depending on the species, root diameter might increase 1/8-1/4” annually.

Within five to eight years, a small feeder root may grow to one-inch in diameter or greater.

Ficus root cracked the garage slab

The root growth may be compared to the action of a hydraulic jack, as the circumference increases, the upward pressure on the sidewalk or slab may crack and or eventually cause tree roots to lift the sidewalk.  Concrete lifting may often occur at an expansion joint between concrete panels

Sidewalk lifted at expansion joint

Root network beneath sidewalk.

Roots seek out soil moisture, they can and will grow under walls, footings and garage slabs.  Roots are opportunistic, leaky plumbing, old cast iron sewer lateral or water services contribute to the soil moisture needed for roots to flourish. 

Sewer lateral root damage

Roots may infiltrate pvc, abs and cast-iron pipe through even the smallest of cracks or holes. 

Once inside, the roots expand in size and quantity, eventually completely clogging the utility.

If the tree crown has grown over a sidewalk or adjacent structure, it is a reasonable assumption structural roots (two-inch diameter and greater) have grown under the sidewalk, slab or footing.

Root growing under house footing

Planter areas confined by concrete pose one of the greatest risks for root damage.  City sidewalks often incorporate small, square planters within the sidewalk easement.

Roots lifting water meter and sidewalks

Confined planters quickly fill with structural roots, as well as damaging girdling root.  As the tree crown grows, so to do water absorbing feeder roots.  Over time, root mass and size increases, structural roots may begin to grow beneath concrete improvement while seeking out moisture.

Leaking water meter, high soil moisture, confined growing space.

The tree pictured above and to the right had a leaky water meter adjacent to the small sidewalk planter.  The leaky service provided idea soil moisture conditions for the roots to lift the water meter box, adjacent sidewalks and crack the curb and gutter.

Preventative measures to minimize root encroachment include a variety of root barrier methods.  All root barrier systems work best when the tree is installed.  Once roots have enlarged and matured, barrier mitigation is not successful.

In summary, our Southern California poor, shallow soils do not support deep tree tap root systems.  Most trees grow fibrous spreading root systems.  Structural roots emanating from the root collar extend to the edge of the tree crown, (drip line).  Most structural roots growing beneath sidewalks range from two to four inches in diameter, lifting sidewalk panels on average one-two inches. Trees growing in confined planters or adjacent to concrete, utilities or foundations may develop structural roots capable of lifting, cracking or damaging adjacent improvements.

Dealing with legal issues due to tree roots lifting up a sidewalk?

Attorneys should select an expert based on the case criteria, not simply a title, license or certificate. Choose an expert most appropriate to address the cause of the problem and develop opinions based on sound, industry practices.

Finally, A Turf Block Driveway With Thriving Turf!

Rarely have I seen a successful turf block driveway.  Turf block, turf stone, turf pavers are systems installed as living turf driveway alternatives.  The material provides structural support via plastic or concrete cells that are filled with a soil media for turf installation.  The block is designed to support vehicular traffic on driveways while providing a green alternative to concrete or asphalt driveways.

Turf blocks have been used for decades, but rarely have I seen thriving  turf grass within the block.  Not because of the product, but usually due to turf establishment and failure issues.  Due to reduced soil root area, soil compaction, irrigation infiltration and damaged soil structure result in poor turf establishment.  Soil preparation, drainage and proper irrigation coverage and operation are required to grow turf inside of a turf block system.

Lastly, using vigorous, warm season turf grasses that spread by horizontal solons, rhizomes, and rooting improves the successful establishment of turf grass, such as the Tiff hybrid Bermuda grasses developed for sports fields. Cool season turfs including rye, bluegrass and turf type fescues are clumping turfs that do not spread horizontally, thereby limiting establishment and healthy growth.  Cool season grasses are more susceptible to leaf and soil borne diseases, are easily stressed during hot summer months, nor are they tolerant of vehicular and pedestrian traffic and compaction conditions.  

Tiff hybrid Bermuda is well established within the turf block

Trip, Slip and Fall Hazard: Hidden Depressions in Grade

Successful landscapes require:

  • Proper grading, drainage and amended soil.
  • An automatic irrigation system achieving 100% head to head coverage.
  • Properly installed, high quality plant material.

Each of these functions may require a specific type component, installed at a specific height or location to reduce the potential of creating a site hazard that may result in an accident.  In commercial applications, landscape plans usually include details and specifications dictating type of product and how it should be installed.

Many common landscape products may be improperly installed including:

  • Pop up heads may be incorrectly set to grade against a sidewalk.
  • Valve or drainage boxes set too high or low relative to finish grade.
  • Shrub head installed on a riser adjacent to concrete improvement.
  • Hidden, obscured depressions in grade due to substandard compaction, settlement and subsidence.

    Drainage box set too low.

Improper product selection or substandard installation practices may appear obvious.  A pop up sprinkler head set above the top of  adjacent concrete sidewalk creates a trip hazard.  A drainage structure set well below the turf grade creates a trip slip and fall hazard.  Selecting and installing a spray head on a rigid riser next to a pedestrian sidewalk is a sub-standard industry practice that creates a trip and fall hazard.

Spray head on a riser next to a sidewalk creates a trip hazard.

Not all landscape hazards are visible.  Turf areas may have grade depressions or holes that are hidden by overgrown turf grass.  Depending on the cause and time period, turf grass may completely hide the depth, location and size of the depression or hole, creating a hidden hazard.

A depression, rut or hole may result from several factors.  Repeated mowing on saturated turf may  create ruts.  Overwatering may cause irrigation or utility trench settlement.  A dead tree removed from a turf area may result in a future depression if the grade is not properly backfilled and compacted.

A seven inch deep hole hidden by turf grass.

Bermuda grass is a fast horizontal spreading turf-grass used in parks and recreation facilities throughout the country.  Unless regularly aerated and de-thatched, Bermuda grass in known to grow a  thick layer of thatch.  Over time, the thatch layer can increase the turf grade several inches above adjacent sidewalk and curbs.

The backfill in utility trenches installed across pre-existing turf may settle, creating a depression in the sub-grade.  The photo depicts the edge of a trench cut across an asphalt driveway, across a turf area.  The trench backfill eventually settled, creating a trench sub-grade depression hidden by the Bermuda grass.

Thatch, hidden depression and sanded turf.

The depression resulted in a trip and fall accident.  After the accident, several hidden turf depressions were “sanded” to fill  depressions to proper grade.

Not all landscape hazards are open and obvious.  Even a perfectly installed landscape may develop hazardous conditions if not regularly inspected and maintained.

Irrigation systems should be monitored, inspected, tested and adjusted monthly.  Turf should be trimmed around utility boxes and vaults regularly, aerated and de-thatched annually to maintain optimum performance and minimize grade changes.  Drainage structures should be grade adjusted, repaired or replaced when damaged.  Valve, electrical and junction boxes should be monitored for grade changes and adjusted as required.  Bark mulch thickness should be monitored and supplemented annually to maintain proper coverage and grade.

In summary, a properly installed landscape is composed of several systems and components that require regular ongoing maintenance for optimum performance, efficiency and safety.  Pro-active landscape maintenance may reduce potential hazards, resultant accidents and lawsuits.  These actions demonstrates an Owner’s recognition of protecting the health and safety of the public, pedestrians, friends and family who may visit and use the site and may prove useful in a legal action.

A Horticulturists Local Neighborhood Walk

I took my usual walk through local neighborhoods surrounding Balboa Park in San Diego.  A glorious spring day, I couldn’t help but marvel at the beautiful ornamental landscape trees, shrubs and vines in bloom everywhere!  Very uplifting, glad plants are not affected by the virus!

Arborist Online Learning Opportunities in the Covid Era

In a recent blog, I discussed using online media for a site online site inspection involving a Torrey pine tree root conflict with adjacent asphalt paving.  That marked the first time I used an online media tool rather than being physically present at the site.  My client and I used Facetime to conduct the real time inspection.

As the restrictions ease, I believe the use of online media such as Zoom, Hangouts, Facetime etc will increase.  I have already presented this concept to a legal client in Northern California concerning an irrigation inspection.  Do I really need to fly from San Diego to San Francisco, rent a car, drive to the site, observe irrigation defects, then reverse the process returning home or, can I watch the inspection over the web?  The level of scrutiny required depends on the individual case.

A slide from Dr. Smiley’s presentation

Like so many other industries, the tree industry is rapidly adapting to the new Covid – 19 reality.  Today, I attended an online Zoom seminar titled Sidewalks, Urban Plazas and Tree Roots.  This seminar was presented through the ISA Southern Extension.  I believe it was originally going to be part of a “normal” ISA Southern Association Annual meeting that was cancelled due to Covid.

The online presentation occurred through Zoom with over 1000 arborists throughout the U.S. and other countries attending. The topic concerned tree roots damaging sidewalks, presented by Dr. Thomas Smiley.  Once a few technical glitches were adjusted, the presentation was almost identical to what I had experienced attending many seminars.

The slides presented alongside the audio streaming from Dr. Smiley was easy to view.  I became immersed in the content and found myself taking pics of some of the slides.  The topic provided test data results using different techniques designed to reduce root intrusion beneath sidewalks.

Incorporating root growth inhibitor practices

 

The presentation lasted an hour, same amount of time I’m accustomed to when attending a seminar.  Although I already knew a great deal about the topic, I still came away with new information for use in my practice, including a great specification detail incorporating multiple root growth inhibitor practices that may reduce sidewalk damage due to roots.

In the past month, I’ve been able to continue my consulting practice from my home office.  I’ll continue to utilize more online media tools, whether for learning, conducting site inspection work, and client meetings.  I believe these new opportunities are one of the (few) beneficial results from the Covid-19 virus.

I recently provided a client with a proposal to develop landscape maintenance specifications for commercial properties located in several different climatic regions.  The proposal did not include any site visits.  All data collection would occur online through various means.  Using online data collection versus conducting multiple site visits saved the client thousands of dollars.

I’m looking forward to these new opportunities utilizing online media sources as potential replacement for physical presence.  Hopefully it will prove an efficient, effective, cost saving technique without sacrificing product accuracy.

 

 

 

Online Site Inspections with Corona Virus: A New Paradigm?

The corona virus and resulting stay at home order has prevented me from scheduling or attending site inspections.  I require site inspection for most forms of consulting work, including as a consulting arborist or expert witness.

  • Tree failures, health and risk assessment
  • Tree inventories
  • Tree and nursery appraisals
  • Tree roots and infrastructure damage.
  • Landscape appurtenances creating trip and fall hazard.
  • Obscured landscape hazards, grade changes
  • Irrigation operation, maintenance issues

A client wanted me to attend and observe asphalt paving taking place adjacent to an 80 year old Torrey Pine.  I had previously consulted on preserving this tree during construction on an adjacent property.  The client was repaving his driveway on the alley, the pine is right on the edge of the paving.

Due to California stay at home orders, I informed the client I could not be present to observe the paving to make recommendations, so we used the Facetime app and did an online site observation whereby I watched in real time as the work was being performed.  I was able to give the client recommendations in real time.

Moistened towel protect surface roots

He was concerned about root damage, and rightly so.  Some of large buttress roots would be impacted by the paving.  Instead of cutting, I recommended covering the roots with wet towels, fabric etc, then placing moistened sand base, then pave over the roots.

Moistened sand placed over protected roots

As terrible as it is, the corona virus has created many new ways for industries to re-invent how they do their business.  This was the first time I have attempted on online site inspection and it worked!  This may not be applicable for the types of investigations I perform, but there is a great new tool I can use for certain types of investigations during stay at home and even beyond.

Asphalt paving over protected roots

 

The financial savings for the client are obvious.  Travel costs for me to travel to Los Angeles, Orange or Inland Empire typically range from $500 to $1000 or more if hotel stay is required.

Not all inspections can be performed remotely.  Forensic investigations that require measurements, excavations, sampling, testing etc may not be applicable.

Since this is new to me, it will take some real time client cases for me to determine how and when I can utilize this new tool.